
The ANL/IBM SP Scheduling SystemDavid A. LifkaMathematics and Computer Science DivisionArgonne National Laboratorylifka@mcs.anl.govAbstractDuring the past �ve years scientists discovered that modern UNIXworkstations connected with ethernet and �ber networks could provideenough computational performance to compete with the supercomputersof the day. As this concept became increasingly popular, the need fordistributed queuing and scheduling systems became apparent. Systemssuch as DQS from Florida State were developed and worked very well.Today, supercomputers, such as Argonne National Laboratory's IBM SPsystem, can provide more CPU and networking speed than can be obtainedfrom these networks of workstations. These modern supercomputers looklike clusters of workstations, however, so developers felt that the schedulingsystems that were previously used on clusters of workstations should stillapply. After trying to apply some of these scheduling systems to Argonne'sSP environment, it became obvious that these two computer environmentshave very di�erent scheduling needs. Recognizing this need and realizingthat no one has addressed it, I developed a new scheduling system. Theapproach taken in creating this system was unique in that user input andinteraction were encouraged throughout the development process. Thus,a scheduler was built that actually "worked" the way the users wanted itto work.1 BackgroundThe Mathematics and Computer Science Division of Argonne National Labo-ratory acquired a 128-node SP system in order to study parallel computing,scalable I/O, and several other advanced computing areas. The SP system hasmany types of users, whose various jobs often have con
icting requirements.In order to come up with a "fair" way to schedule these di�erent jobs, severalpopular scheduling systems were considered. After studying these schedulingsystems and actually trying a few, it was determined that none of them couldactually suit the needs of our user community. The problem was that these sys-tems had been developed for clusters of high-end workstations connected by fastnetworks. The authors of these systems had considered all the "best" ways toschedule jobs on such a distributed system, including scheduling I/O-intensivejobs with CPU-intensive jobs, and many other popular, optimistic schedulingschemes. These schedulers can do all sorts of complex things but not the sim-ple things that our users wanted! This situation was quite disturbing, and mytask was to �nd a scheduling system that could satisfy our user community orschedule their jobs by hand round-the-clock! Not being much of a night person,

I opted to write my own scheduling system in which the user community couldde�ne its requirements.2 In Search of the Ultimate SchedulerBefore beginning to write a new scheduler, a lot of thought went into what ex-actly it was a scheduling system should provide. There were three basic goalsthat almost any scheduling system strives for: fairness, simplicity (easy to un-derstand), and e�cient use of the available resources. These three goals areobviously in con
ict, so there had to be some compromise that would make theusers happy. After a fair amount of research, we developed a list of features thatan "Ultimate Scheduler" should:� Provide optimum performance (e.g., I/O-bound and CPU-bound jobs to-gether)� Be fair (whatever that means...)� Support di�erent job classes (e.g., interactive vs. batch)� Support various message-passing libraries� Use static or dynamic partitioning of the machine� Utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms� Schedule di�erent computation models (task farm vs. parallel processing)� Manage other system resources (e.g., I/O subsystems)� Provide priority scheduling for special jobsSeveral of these items really depend upon how the users of a machine expect tobe able to use it. There are several very nice scheduling systems available todaythat try to address these issues. A few of the more popular are� DQS from Florida State� Condor from University of Wisconsin� IBM LoadLeveler� NQSThe problem with these systems is that they all primarily focus on managingmultiple queues of non-parallel jobs for networks of workstations. They weredeveloped in the age of the "free supercomputing" movement. This was not toolong ago when high-end workstations connected by fast networks could provideas much computational power as the super-computers of the day at a fraction ofthe cost. Many of these scheduling systems do more than scheduling. Figure 1

shows the main pieces of a complete scheduling system. Several of the availablescheduling systems have implemented the various pieces of this diagram in atightly coupled fashion. This implementation greatly reduces the extensibilityof the system. For this reason a scheduling system that would meet the ANLgoals addresses only "Scheduling" and attempts to get the other pieces fromeither the machine vendors or other developers wherever possible.
Dynamic Process Allocation

Security

Resource
Management

Job
Starter

User
Processes

SchedulingFigure 13 The ANL Scheduler RequirementsArgonne's users and management had their own set of requirements that thesesystems couldn't quite address. The �rst was that users had to be able to requesta set of nodes for any type of use. ANL users have several di�erent modes ofoperation. Some need to be able to do task farming, where the SP is used as if itwere a large collection of unconnected workstations; others want to run paralleljobs using various message-passing libraries. They need to be able to run jobsinteractively and in batch mode. Interactive use allows users to actually logonto the nodes and run their codes by hand. This facilitates debugging andsimple use of the machine for less sophisticated users. Batch use allows for largeproduction runs and unattended runs during the night or weekends. Because ofthese di�erent job types it was important not to statically partition the machineinto di�erent-size "pools" of nodes. A 127-node job should be able to run witha 1-node job, as should a 65-node job with a 63-node job. These di�erent jobshave equal importance so the number of requested resources and duration orusage had drive the queuing policy, not the "types" of jobs.4 Addressing RequirementsSeveral of the members of the Mathematics and Computer Science Division atANL are researching new message-passing systems, so the scheduler had to beable to make use of any of them. Addressing this requirement was di�cult be-cause of a software limitation but led to one of the key concepts of the scheduler.

To use the IBM SP high-performance switch, the users must have exclusive ac-cess to it. At the same time, there had to be a fair alternative for SP userswho weren't necessarily using the switch, or even doing parallel programming.It turned out the only fair thing to do was to provide any user exclusive accessto any number of nodes requested. For several reasons this turned out to be anadvantage in the scheduler development. Exclusive access meant that any userwould have optimal cache performance, access to all the memory, and access tothe full CPU and I/O potential of each node for benchmarking performance.This "great" idea of exclusive access has a major drawback. If users have ex-clusive access, what is to keep them from holding the resource and not lettingother jobs on the system? There had to be a way to provide exclusive access tothe machine and still provide a deterministic run-time for any given job. Thisis the other key concept in the ANL scheduling system. Users have to provide arun-time in wall-clock node/minutes (like in the days of mainframe computing).Having exclusive access to the nodes allows them to do this, since they will beable to better predict the run-time of their jobs. These key concepts | exclu-sive access and user-provided run-times | allow for this di�erent approach toscheduling.There is still one other problem with this idea. What prevents a user fromscheduling a job that requires all the resources for a very long time. It quicklybecame apparent that a new resource-accounting mechanism was needed. Us-ing the system-generated accounting statistics of CPU and I/O usage was notsu�cient. Users who "forgot" to use exclusively scheduled time would not be"charged" anything since they consumed no resources. The accounting systemhad to be based on wall-clock time scheduled, not resources used. When usersare given their account, they are given a number of resource-units to use onthe machine, in the case of ANL wall-clock minutes. Once they have used alltheir units, they are not allowed to submit any more jobs to the queue. Thise�ectively prevents users from asking for more time on the machine than theyactually need.5 An Attempt at FairnessBased on the two key scheduler concepts, a FIFO queue was the �rst queuingmethod that was implemented. The ANL users ran a variety of jobs on thesystem. Figure 2 shows the typical resource requirements that were observed.Required Nodes Required Time1 - 8 nodes 8 - 48 hours16 - 32 nodes 1 - 8 hours64 - 128 nodes 30 minutes - 3 hoursFigure 2

Realizing the limitations of a FIFO queue, the scheduler was designed to be verymodular so that new or di�erent user requirements could drive the schedulingpolicy without requiring a complete rewrite of the code. This also provided thecapability to plug in di�erent queuing algorithms. Another important di�er-ence between the ANL SP Scheduler and others is that users were involved inthe development and creating the scheduler policy from the beginning. Ratherthan try to come up with the optimal computer-science solution, a simple FIFOsolution was applied, and users were encouraged to make suggestions for its im-provement. To do this was actually simple. Users simply needed to be able tosee the current scheduling algorithm and job queue, and to watch the queuing ofjobs in operation. This approach allows the users to quickly become acquaintedwith the problems the scheduler is trying to solve and to suggest improvementsin its operation. Having this user interaction allowed the users to help debugthe scheduler, and thus its development became a community project.It quickly became apparent to all that a FIFO queue was extremely ine�cient.What typically would happened was that on a 128-node system a job requiringonly a few nodes would start and the next job in the queue would require 128nodes. Hence, a large number of nodes would remain idle until the �rst job�nished and the second job could start. A new scheme was quickly devised. Itwas dubbed FIFO with back�lling. Back�lling provides a way to �ll in the idlenodes caused by the situation just described with other jobs further down thequeue, provided that they do not cause the �rst job in the queue to wait anylonger for the nodes they require. Here is an example of a typical queue of jobsand back�lling in action:Step 1: 128 nodes are idle with the following queue of jobs. User A needs 32nodes and there are 128 available so it is allowed to start.User Number Number JobName of Nodes of Minutes StatusUser A 32 120 StartableUser B 64 60 WaitingUser C 24 180 WaitingUser D 32 120 WaitingUser E 16 120 WaitingUser F 10 480 WaitingUser G 4 30 WaitingUser H 32 120 WaitingStep 2: 96 nodes are idle and 32 are in use with the following queue of jobs.User B needs 64 nodes and there are 64 available so it is allowed to start.

User Number Number JobName of Nodes of Minutes StatusUser A 32 120 RunningUser B 64 60 StartableUser C 24 180 WaitingUser D 32 120 WaitingUser E 16 120 WaitingUser F 10 480 WaitingUser G 4 30 WaitingUser H 32 120 WaitingStep 3: 32 nodes are idle and 96 are in use with the following queue of jobs.User C needs 24 nodes and there are 32 available so it is allowed to start.User Number Number JobName of Nodes of Minutes StatusUser A 32 120 RunningUser B 64 60 RunningUser C 24 180 StartableUser D 32 120 WaitingUser E 16 120 WaitingUser F 10 480 WaitingUser G 4 30 WaitingUser H 32 120 WaitingStep 4: 8 nodes are idle and 120 are in use with the following queue of jobs. UserD needs 32 nodes and there are only 8 nodes available so it is not able to start.Now the back�ll algorithm has to determine how long User D is blocked, or inother words how long it will be before enough nodes will be available for User Dto run. To do this, the scheduler looks at the list of running jobs and determineshow long it will be until enough have them have �nished for User D to start.User A will be �nished in 120 minutes, User B will �nished in 60 minutes, andUser C 180 minutes. From this list the algorithm determines that when User B�nishes in 60 minutes, there will be enough nodes available for User D to start;therefore, User D should have to wait for 60 minutes at the longest. With thisinformation the algorithm now looks at the queue of jobs looking for a job thatcan use the 8 available nodes for 60 minutes or less. Users E and F require toomany nodes so they cannot back�ll. User G requires 4 nodes for 30 minutes,which will not delay the start of User D, so it is allowed to start.

User Number Number JobName of Nodes of Minutes StatusUser A 32 120 RunningUser B 64 60 RunningUser C 24 180 RunningUser D 32 120 BlockedUser E 16 120 IneligibleUser F 10 480 IneligibleUser G 4 30 StartableUser H 32 120 WaitingNow suppose that User F needs 8 nodes instead of 10. Eight nodes are idle and120 are in use with the following di�erent queue of jobs. User D needs 32 nodesand there are only 8 nodes available, so it is not able to start. Now the back�llalgorithm has to determine how long User D is blocked, or in other words howlong it will be before enough nodes will be available for User D to run. To dothis, it looks at the list of running jobs and determines how long it will be untilenough have them have �nished for User D to start. User A will be �nished in120 minutes, User B will �nished in 60 minutes, and User C 180 minutes. Fromthis list the algorithm determines that when User B �nishes in 60 minutes therewill be enough nodes available for User D to start; therefore, User D should haveto wait for 60 minutes at the longest. With this information the algorithm nowlooks at the queue of jobs looking for a job that can use the 8 available nodesfor 60 minutes or less. User E requires too many nodes, so it cannot back�ll.User F requires 8 nodes for 480 minutes, which is longer than the time User Dis blocked for; but when User B �nishes, it will release 64 nodes, which is morethan User D needs. The back�ll algorithm determines that there will still beenough nodes for User D to start in 60 minutes if it starts User F, so it is started.User Number Number JobName of Nodes of Minutes StatusUser A 32 120 RunningUser B 64 60 RunningUser C 24 180 RunningUser D 32 120 BlockedUser E 16 120 IneligibleUser F 8 480 StartableUser G 4 30 WaitingUser H 32 120 Waiting6 Keep It SimpleAnother drawback to many of the available scheduling systems is that they canbe quite complicated to use and, for naive users, quite intimidating. To avoidthis problem, I desgined a minimal set of commands, with functions similar to

the UNIX commands they mimic or to their names. These simple commandscan be used to build up more elaborate tools if the users wish to do so. Thefollowing list shows the complete set of user commands and a brief explanationof their functionality:sphelp list user commandsand their functionsspfree return the numberof free nodessppause pause a job waiting inthe queue so that itwill not be startedspunpause unpause a job waitingin the queuespq show the jobs currentlyon the system andwaiting in the queuesprelease release a node backto the free poolspsubmit submit a job to queuespusage return a currentsnap-shot of theresource �lespwait block until a speci�cjob has completedspwhat return what type ofjob could be run ifsubmitted nowspwhen tell when a speci�cjob will start giventhe current queuegetjid return the user job IDon a scheduled node.7 SummaryThe key design features of the ANL SP scheduler are that it provides exclusiveaccess to the nodes the user is allocated and that users provide run-times in wall-clock minutes so that anyone can determine when a job will start. Providingusers with enough information to understand the queuing mechanism and thetools to follow its progress in real time allows the users to help in the debuggingand enhancement of the scheduler. By using user requirements as design points,a very simple scheduler was able to be developed to satisfy their needs. Althoughthese requirements are seemingly simple, it was surprising to �nd that many oftoday's advanced scheduling systems do not support them. More information onthe Argonne SP scheduling system and how it addresses IBM SP-speci�c issues

is available in the Users Guide to the Argonne SP Scheduling System [1].References1. Lifka, D., Henderson, M.,and Rayl, K.,ANL/MCS-TM-201, Users Guideto the Argonne SP Scheduling System, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, IL (1995)

